“Broad dissemination of research results is fundamental to the advancement of knowledge... This ultimately magnifies the public benefits of research by promoting progress, enhancing economic growth, and improving the public welfare.”

— Open letter to the U.S. Congress signed by 52 Nobel laureates
What is wrong with how science is distributed today?

- Restricted access within the academic community
- Reading papers is separate from discovery and discussion
- Information that facilitate the understanding of papers gets lost and stays offline
PeerLibrary distributes science to the public by enriching academic literature with a collaboratively edited layer of knowledge.
Instantly search through millions of titles and authors
THE GRAHAM CONJECTURE IMPLIES THE ERDŐS-TURÁN CONJECTURE

LIANGPAN LI

Abstract: Erdős and Turán once conjectured that any set \(A \subset N \) with \(\sum_{n \in A} 1/n = \infty \) should contain infinitely many progressions of arbitrary length \(k \geq 3 \). For the two-dimensional case, Graham conjectured that if \(B \subset N \times N \) satisfies
\[
\sum_{(x,y) \in B} \frac{1}{x^2 + y^2} = \infty,
\]
then for any \(x \geq 2 \), \(B \) contains an \(x \times x \) non-parallel grid. In this paper it is shown that if the Graham conjecture is true for some \(x \geq 2 \), then the Erdős-Turán conjecture is true for \(k = 2x - 2 \).

1. Introduction

One famous conjecture of Erdős and Turán [2] asserts that any set \(A \subset N \) with \(\sum_{n \in A} 1/n = \infty \) should contain infinitely many progressions of arbitrary length \(k \geq 3 \). There are two important progresses towards this direction due to Szemerédi [7] and Green and Tao [6], respectively, which assert that if \(A \) has positive upper density or \(A \) is in the set of the prime numbers, then \(A \) contains infinitely many progressions of arbitrary length.

If one considers the similar question in the two-dimensional plane, Graham [3] conjectured that if \(B \subset N \times N \) satisfies
\[
\sum_{(x,y) \in B} \frac{1}{x^2 + y^2} = \infty,
\]
then \(B \) contains the four vertices of an non-parallel square. More generally, for any \(k \geq 2 \) it should be true that \(B \) contains an \(n \times n \) non-parallel grid. Furstenberg and Katznelson [3] proved the two-dimensional Szemerédi theorem, that is, any set \(B \subset N \times N \) with positive upper density contains an \(n \times n \) non-parallel grid. In another words, such a set \(B \) contains any finite pattern.

The purpose of this paper is to show that if the Graham conjecture is true, then the Erdős-Turán conjecture is also true.

2. The Graham Conjecture Implies the Erdős-Turan Conjecture

Suppose that the Erdős-Turán conjecture is false for \(k = 3 \). Then there exists a set
\[
A = \{a_1 < a_2 < a_3 < \ldots \} \subset N
\]
with $\sum_{i=1}^{m} 1/a_i = \infty$ such that A contains no arithmetic progression of length 3. Define a set $B \in \mathbb{N} \times \mathbb{N}$ by

$$B = \left\{ (a_n, m, n) : n \in \mathbb{N}, m \in \mathbb{N} \right\}.$$

Then

$$\sum_{i=1}^{m} 1/a_i^2 \geq \sum_{i=1}^{m} \frac{1}{|a_i - m|^2 + m^2} \geq \sum_{i=1}^{m} \frac{1}{|a_i - m|^2} \geq \sum_{i=1}^{m} \frac{1}{|a_i - a_{i+1}|^2} = \sum_{i=1}^{m} \frac{1}{b_{i+1}} = \infty.$$

In the sequel we indicate that B contains no square and argue by contradiction. This would mean that the Graham conjecture is false for $x = 3$. Suppose that for some $n, m, l \in \mathbb{N}$, B contains a square of the following form:

$$(a_n - m, m + l), (a_n - m + l, m + l - 1), (m, m + l - m), (m + l, m + l).$$

It follows easily from the construction of B that $a_{n+1} - 1, a_{n+1} + l \in A$, which yields a contraction since A contains no arithmetic progression of length 3 according to the initial assumption.

Similarly, if the Graham conjecture is true for some $x \geq 2$, then the Erdős-Turán conjecture is true for $k = 2x - 1$. The interested reader can easily provide a proof.

3. CONCLUDING REMARKS

Let $r(k, N)$ be the maximal cardinality of a subset A of $\{1, 2, \ldots, N\}$ which is free of k-term arithmetic progressions. Behrend [1] and Rankin [6] had shown that $r(k, N) \sim C k \cdot N^{2/k}$. Thus

$$\sum_{k=1}^{N} r(k, N) \geq C N^{2} \sum_{k=1}^{N} k^{-(2/k)} = \infty.$$
One year goals

- Index all known open access repositories for works and metadata
- Collaborative real-time annotation and discussions layer integrated with the web-based PDF viewer
- Communities around interests and disciplines
- Collaboratively organizing, correcting metadata and tagging of publications
Subscribe to newsletter
http://peerlibrary.org

Follow us
@PeerLibrary
http://blog.peerlibrary.org

Source:
https://github.com/peerlibrary