K-12 Teachers

User research findings and the Pasteboard product concept

September 2013
Creative Commons Product Team
The Teacher Journey
Class Time

- Set up the classroom
- Take attendance
- Review prior material
- Present class topics
- Guide activities, labs, exercises
- Coach students
- Assign homework and point to supplemental materials
- Clean up the classroom
- Conduct tests or assessments
Daily

Class time

Prep time

Class time

Prep time

Outside school prep time

Prep Time

• Respond to urgent emails
• Student-related activities
• Grading student work
• Meetings (parents, staff, students)
• Cleanup and organize
• Planning classes for the next couple of days
• Research topics & class activities
• Write/review rubrics & assignments
• Find, curate relevant content
• Assemble & tweak resources
Outside School Prep

- Grading student work
- Do email
- Plan classes for the next couple of days
- Research tools, topics & class activities
- Write/review rubrics & assignments
- Find, curate relevant content
- Assemble & tweak resources
Constraints

Not all students get engaged in the same way during class time

Difficult to customize the different instructional materials for each students’ needs

Not knowing if the tools will work in the classroom context

Creating new educational material for my students is so time-consuming

No clear way to keep track of all the new educational materials out there that could be useful in class
Insights
No matter where it comes from, I always have to adapt content, but it’s hard, so I don’t always do it.
A ‘successful day’ is based on the feedback that I get regarding the expectations I have for my students and for myself.
Prepping is an intense planning and customization activity subject to many external pressures like moving schedules, changing standards, and team changes.
Differentiation allows me to engage students at varied levels or with different interests, but it requires extra effort, immediate feedback, and deep subject expertise.
I consider the textbook to be just an outline, so I’m always looking for new, relevant content, even though it takes a lot of time.
I recognize creation and curation both as forms of ownership, but neither stops me from sharing with my colleagues.
I complement my classroom teaching with supplemental materials for the home, but it’s hard to control the exact experience and learning path that students will have.
Tool lock-in is a worry, but if it’s immediately clear how something will fit in my workflow I might use it.
Not all kids learn in the same way, so I like to mix things up to keep myself and the kids engaged.
Staying on top of plans and dealing with multiple classrooms and limited class time is challenging.
I have a strong sense of right and wrong but the legal framework doesn’t match that.
Problem Statement
Tracking and giving attribution to sources in my documents is cumbersome and time-consuming.
When someone shares a document with me, it takes time and effort to make it fit my needs, because it comes decoupled from research links.
When I re-edit a document a year later, it’s hard to recall/find all the relevant research links I originally found when I wrote the document.
A Rough Concept
Sally is an 8th grade science teacher who is browsing the web. While planning upcoming class lessons during her prep time she encounters a relevant article around the application of buoyancy for submarines.
A submarine or a ship can float because the weight of water that it displaces is equal to the weight of the ship. This displacement of water creates an upward force called the buoyant force and acts opposite to gravity, which would pull the ship down. Unlike a ship, a submarine can control its buoyancy, thus allowing it to sink and surface at will.

To control its buoyancy, the submarine has ballast tanks and auxiliary, or trim tanks, that can be alternately filled with water or air (see animation below). When the submarine is on the surface, the ballast tanks are filled with air and the submarine's overall density is less than that of the surrounding water. As the submarine dives, the ballast tanks are flooded with water and the air in the ballast tanks is vented from the submarine until its overall density is greater than the surrounding water and the submarine begins to sink (negative buoyancy). A supply of compressed air is maintained aboard the submarine in air flasks for life support and for use with the ballast tanks. In addition, the submarine has movable sets of short "wings" called hydroplanes on the stern (back) that help to control the angle of the dive. The hydroplanes are angled so that water moves over the stern, which forces the stern upward; therefore, the submarine is angled downward.

Sally likes the content of the article but notices that she will need more illustrations to use it in class with her students. She decides to highlight and select the portions of the article that she finds relevant and drags them to the bottom left of the browser where the pasteboard tray opens. The dragged content becomes a clipping inside the tray.
A submarine or a ship can float because the weight of water that it displaces is equal to the weight of the ship. This displacement of water is known as buoyancy. Ballast tanks are also integral to the stability and operation of deepwater offshore oil platforms and floating wind turbines. The ballast tanks are connected to pumps which can pump water in or out. These tanks are filled in order to add weight to the ship once cargo is loaded.

Sally then goes Wikipedia in search of an illustration and discovers additional content that is relevant. She repeats the clipping process on a series of paragraphs as well as an image that illustrates buoyancy quite nicely.
A submarine or a ship can float because the weight of the water that it displaces is equal to the weight of the ship. This displacement of water is integral to the movement of the submarine or ship once cargo is loaded.

Ballast tanks are also integral to the stability and operation of deepwater offshore oil platforms and floating wind turbines. These ballast tanks are connected to pumps which can pump water in or out. These tanks are filled in order to add weight to the ship once cargo is loaded.
Data: Record data and observations for each trial below.

Trial Data and Observations for Mini Submarine Lab

<table>
<thead>
<tr>
<th>Trial</th>
<th>Amount of Tablet</th>
<th>Amount of Water</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: In complete sentences, describe what causes the submarine to sink, then to float. Use various principles and laws that you’ve learned from Chapter 16. Be specific.

Sally notices that a new section was immediately added to her document where a series of links or references appear. She wonders what it’s about, and reading more closely she realizes it’s an attribution block for the content she just pasted.
Conclusion: In complete sentences, describe what causes the submarine to sink, then to float. Use various principles and laws that you’ve learned from Chapter 16. Be specific.

Sally continues to paste the other clippings from her pasteboard tray and edits the document, both tweaking what is there, as well as creating new text sections of her own. She notices that the ‘attribution block’ gets updated automatically as she drops in more content from her pasteboard tray, which she finds very handy. The handout is ready, and she plans to share it with her students via the Google Docs built-in share feature.
A few days later, after class...

During Sally's office hours, one of the students drops by and mentions to Sally how cool she found one of the source materials that was linked from the 'attribution block' inside the handout.
Can I change the look of this block inside here?

Megan, another 8th grade science teacher, overhears this conversation and asks what this cool link was. Sally then shares the handout with Megan who notices the link is in a references section, and asks Sally how she put together that block. Sally tells her about this new tool she’s been trying out to collect and put together her class materials and gives her the name of this service. Megan likes it, but wonders if the location or appearance of the block might be customizable.
Megan starts building on top of Sally’s work

Procedure:

1. Design and construct a submarine using the materials listed. You will not get extra antacid tablets. You should do several preliminary tests (using your hypothesis first) before doing your final, official trial. Record information from each trial in the data table provided.

2. Show your teacher at least one working model of your submarine to receive full credit. Have teacher initial the appropriate space on back of sheet.

3. On another sheet of paper, write the exact procedure used to construct the submarine and make it work. Use numbers to identify the order of the steps. Use complete sentences.

Data: Record data and observations for each trial below.

Megan thinks the tool is a cool idea, and signs up to use it. She also has a class on buoyancy coming up soon, and decides to use the handout that Sally put together, but she has a few kids who are more visual learners, so she plans to do a few tweaks of her own to add more visuals. Megan duplicates Sally’s handout using Google Docs’ “Make a Copy” feature, and and notices that when she moves her cursor to the bottom of her browser the pasteboard tray comes up already pre-filled with the clippings that Sally had put together to create the handout. She is amazed that she is able to take a peek into Sally’s research effort simply by opening this document.
A submarine or a ship can float because the weight of water that it displaces is equal to the weight of the ship. This displacement of water makes it float.

This doesn’t mean that if you had a few blocks of wood that were exactly the same size and shape, they would each displace the same amount of water. A block of wood made of oak, for example, will displace more of the water than does a block of pine. The reason is that it’s heavier for its size, or denser — in this case, the molecules that make it up are more closely packed together than the molecules that make up the pine.

If you could somehow keep increasing the density of the block, it would sink lower and lower into the water. When its density increased enough to displace an amount of water whose weight was equal to the weight of the block, it would, in a sense, become weightless in the water.

Procedure:
1. Design and construct a submarine from each trial in the data table provided.
2. Show your teacher at least one work of the appropriate space on the back of the paper.
3. On another sheet of paper, write the results of your work and use complete sentences to identify the sources of error.

Megan visits some sites of her own and clips the content she needs, and when she pastes the content into her new handout, she notices that the 'attribution block' is updated to reflect her effort whilst retaining attribution for Sally’s previous effort. She finds this pretty amazing, and realizes that this tool is about building on top of each other’s work.
Accessing the Pasteboard UI service