
Page 1 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

Add developer-view styles

HTML5
A vocabulary and associated APIs for HTML and XHTML

W3C Recommendation 28 October 2014
← 6 Web application APIs – Table of contents – 8 The HTML syntax →

. 7 User interaction
1. 7.1 The hidden attribute
2. 7.2 Inert subtrees
3. 7.3 Activation
4. 7.4 Focus

1. 7.4.1 Sequential focus navigation and the tabindex
attribute

2. 7.4.2 Focus management
3. 7.4.3 Document-level focus APIs
4. 7.4.4 Element-level focus APIs

5. 7.5 Assigning keyboard shortcuts
1. 7.5.1 Introduction
2. 7.5.2 The accesskey attribute
3. 7.5.3 Processing model

6. 7.6 Editing
1. 7.6.1 Making document regions editable: The

contenteditable content attribute
2. 7.6.2 Making entire documents editable: The designMode

IDL attribute
3. 7.6.3 Best practices for in-page editors
4. 7.6.4 Editing APIs
5. 7.6.5 Spelling and grammar checking

7 User interaction

7.1 The hidden attribute

All HTML elements may have the hidden content attribute set. The hidden
attribute is a boolean attribute. When specified on an element, it indicates that
the element is not yet, or is no longer, directly relevant to the page's current
state, or that it is being used to declare content to be reused by other parts of the
page as opposed to being directly accessed by the user. User agents should not
render elements that have the hidden attribute specified. This requirement may
be implemented indirectly through the style layer. For example, an HTML+CSS
user agent could implement these requirements using the rules suggested in the

http://www.w3.org/
http://www.w3.org/TR/html5/webappapis.html
http://www.w3.org/TR/html5/webappapis.html
http://www.w3.org/TR/html5/Overview.html#contents
http://www.w3.org/TR/html5/syntax.html
http://www.w3.org/TR/html5/syntax.html
http://www.w3.org/TR/html5/editing.html#editing
http://www.w3.org/TR/html5/editing.html#the-hidden-attribute
http://www.w3.org/TR/html5/editing.html#the-hidden-attribute
http://www.w3.org/TR/html5/editing.html#the-hidden-attribute
http://www.w3.org/TR/html5/editing.html#inert-subtrees
http://www.w3.org/TR/html5/editing.html#activation
http://www.w3.org/TR/html5/editing.html#focus
http://www.w3.org/TR/html5/editing.html#sequential-focus-navigation-and-the-tabindex-attribute
http://www.w3.org/TR/html5/editing.html#sequential-focus-navigation-and-the-tabindex-attribute
http://www.w3.org/TR/html5/editing.html#sequential-focus-navigation-and-the-tabindex-attribute
http://www.w3.org/TR/html5/editing.html#sequential-focus-navigation-and-the-tabindex-attribute
http://www.w3.org/TR/html5/editing.html#focus-management
http://www.w3.org/TR/html5/editing.html#document-level-focus-apis
http://www.w3.org/TR/html5/editing.html#element-level-focus-apis
http://www.w3.org/TR/html5/editing.html#assigning-keyboard-shortcuts
http://www.w3.org/TR/html5/editing.html#introduction-5
http://www.w3.org/TR/html5/editing.html#the-accesskey-attribute
http://www.w3.org/TR/html5/editing.html#the-accesskey-attribute
http://www.w3.org/TR/html5/editing.html#the-accesskey-attribute
http://www.w3.org/TR/html5/editing.html#processing-model-4
http://www.w3.org/TR/html5/editing.html#editing-0
http://www.w3.org/TR/html5/editing.html#contenteditable
http://www.w3.org/TR/html5/editing.html#contenteditable
http://www.w3.org/TR/html5/editing.html#contenteditable
http://www.w3.org/TR/html5/editing.html#making-entire-documents-editable:-the-designmode-idl-attribute
http://www.w3.org/TR/html5/editing.html#making-entire-documents-editable:-the-designmode-idl-attribute
http://www.w3.org/TR/html5/editing.html#making-entire-documents-editable:-the-designmode-idl-attribute
http://www.w3.org/TR/html5/editing.html#making-entire-documents-editable:-the-designmode-idl-attribute
http://www.w3.org/TR/html5/editing.html#best-practices-for-in-page-editors
http://www.w3.org/TR/html5/editing.html#editing-apis
http://www.w3.org/TR/html5/editing.html#spelling-and-grammar-checking
http://www.w3.org/TR/html5/infrastructure.html#html-elements
http://www.w3.org/TR/html5/infrastructure.html#boolean-attribute
http://www.w3.org/TR/html5/rendering.html#hiddenCSS

Page 2 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

Rendering section.

Because this attribute is typically implemented using CSS, it's also possible to
override it using CSS. For instance, a rule that applies 'display: block' to all
elements will cancel the effects of the hidden attribute. Authors therefore have
to take care when writing their style sheets to make sure that the attribute is still
styled as expected.

In the following skeletal example, the attribute is used to hide the Web game's
main screen until the user logs in:

 <h1>The Example Game</h1>
 <section id="login">
 <h2>Login</h2>
 <form>
 ...
 <!-- calls login() once the user's credentials have
been checked -->
 </form>
 <script>
 function login() {
 // switch screens
 document.getElementById('login').hidden = true;
 document.getElementById('game').hidden = false;
 }
 </script>
 </section>
 <section id="game" hidden>
 ...
 </section>
The hidden attribute must not be used to hide content that could legitimately be
shown in another presentation. For example, it is incorrect to use hidden to hide
panels in a tabbed dialog, because the tabbed interface is merely a kind of
overflow presentation — one could equally well just show all the form controls in
one big page with a scrollbar. It is similarly incorrect to use this attribute to hide
content just from one presentation — if something is marked hidden, it is hidden
from all presentations, including, for instance, printers.

Elements that are not themselves hidden must not hyperlink to elements that
are hidden. The for attributes of label and output elements that are not
themselves hidden must similarly not refer to elements that are hidden. In both
cases, such references would cause user confusion.

Elements and scripts may, however, refer to elements that are hidden in other
contexts.

For example, it would be incorrect to use the href attribute to link to a section
marked with the hidden attribute. If the content is not applicable or relevant,

http://www.w3.org/TR/html5/rendering.html#hiddenCSS
http://www.w3.org/TR/html5/links.html#hyperlink
http://www.w3.org/TR/html5/forms.html#the-label-element
http://www.w3.org/TR/html5/forms.html#the-output-element
http://www.w3.org/TR/html5/links.html#attr-hyperlink-href

Page 3 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

then there is no reason to link to it.

It would be fine, however, to use the ARIA aria-describedby attribute to refer
to descriptions that are themselves hidden. While hiding the descriptions
implies that they are not useful alone, they could be written in such a way that
they are useful in the specific context of being referenced from the images that
they describe.

Similarly, a canvas element with the hidden attribute could be used by a
scripted graphics engine as an off-screen buffer, and a form control could refer to
a hidden form element using its form attribute.

Accessibility APIs are encouraged to provide a way to expose structured content
while marking it as hidden in the default view. Such content should not be
perceivable to users in the normal document flow in any modality, whether using
Assistive Technology (AT) or mainstream User Agents.

When such features are available, User Agents may use them to expose the full
semantics of hidden elements to AT when appropriate, if such content is
referenced indirectly by an ID reference or valid hash-name reference. This
allows ATs to access the structure of these hidden elements upon user request,
while keeping the content hidden in all presentations of the normal document
flow. Authors who wish to prevent user-initiated viewing of a hidden element
should not reference the element with such a mechanism.

Because some User Agents have flattened hidden content when exposing such
content to AT, authors should not reference hidden content which would lose
essential meaning when flattened.

For example, it would be incorrect to use the href attribute to link to a section
marked with the hidden attribute. If the content is not applicable or relevant,
then there is no reason to link to it.

It would be fine, however, to use the ARIA aria-describedby attribute to refer
to descriptions that are themselves hidden. While hiding the descriptions
implies that they are not useful alone, they could be written in such a way that
they are useful in the specific context of being referenced from the images that
they describe.

Similarly, a canvas element with the hidden attribute could be used by a
scripted graphics engine as an off-screen buffer, and a form control could refer to
a hidden form element using its form attribute.

Elements in a section hidden by the hidden attribute are still active, e.g. scripts
and form controls in such sections still execute and submit respectively. Only
their presentation to the user changes.

http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
http://www.w3.org/TR/html5/forms.html#the-form-element
http://www.w3.org/TR/html5/forms.html#attr-fae-form
http://www.w3.org/TR/html5/infrastructure.html#concept-id
http://www.w3.org/TR/html5/infrastructure.html#valid-hash-name-reference
http://www.w3.org/TR/html5/links.html#attr-hyperlink-href
http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
http://www.w3.org/TR/html5/forms.html#the-form-element
http://www.w3.org/TR/html5/forms.html#attr-fae-form

Page 4 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

The hidden IDL attribute must reflect the content attribute of the same name.

7.2 Inert subtrees

A node (in particular elements and text nodes) can be marked as inert. When a
node is inert, then the user agent must act as if the node was absent for the
purposes of targeting user interaction events, may ignore the node for the
purposes of text search user interfaces (commonly known as "find in page"), and
may prevent the user from selecting text in that node. User agents should allow
the user to override the restrictions on search and text selection, however.

For example, consider a page that consists of just a single inert paragraph
positioned in the middle of a body. If a user moves their pointing device from
the body over to the inert paragraph and clicks on the paragraph, no
mouseover event would be fired, and the mousemove and click events
would be fired on the body element rather than the paragraph.

When a node is inert, it also can't be focusable.

An entire Document can be marked as blocked by a modal dialog subject.
While a Document is so marked, every node that is in the Document, with the
exception of the subject element and its descendants, must be marked inert.
(The elements excepted by this paragraph can additionally be marked inert
through other means; being part of a modal dialog does not "protect" a node from
being marked inert.)

Only one element at a time can mark a Document as being blocked by a modal
dialog.

7.3 Activation

element . click()
Acts as if the element was clicked.
The click() method must run synthetic click activation steps on the element.

7.4 Focus

When an element is focused, key events received by the document must be
targeted at that element. There may be no element focused; when no element is
focused, key events received by the document must be targeted at the body
element, if there is one, or else at the Document's root element, if there is one. If
there is no root element, key events must not be fired.

User agents may track focus for each browsing context or Document
individually, or may support only one focused element per top-level browsing
context — user agents should follow platform conventions in this regard.

http://www.w3.org/TR/html5/infrastructure.html#reflect
http://www.w3.org/TR/html5/sections.html#the-body-element
http://www.w3.org/TR/html5/sections.html#the-body-element
http://www.w3.org/TR/html5/infrastructure.html#event-click
http://www.w3.org/TR/html5/sections.html#the-body-element
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/infrastructure.html#in-a-document
http://www.w3.org/TR/html5/infrastructure.html#in-a-document
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/dom.html#run-synthetic-click-activation-steps
http://www.w3.org/TR/html5/dom.html#the-body-element-0
http://www.w3.org/TR/html5/dom.html#the-body-element-0
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context

Page 5 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

Which elements within a top-level browsing context currently have focus must be
independent of whether or not the top-level browsing context itself has the
system focus.

When a child browsing context is focused, its browsing context container must
also have focus.

When an element is focused, the element matches the CSS :focus pseudo-
class.

7.4.1 Sequential focus navigation and the tabindex attribute

The tabindex content attribute allows authors to control whether an element is
supposed to be focusable, whether it is supposed to be reachable using
sequential focus navigation, and what is to be the relative order of the element
for the purposes of sequential focus navigation. The name "tab index" comes
from the common use of the "tab" key to navigate through the focusable
elements. The term "tabbing" refers to moving forward through the focusable
elements that can be reached using sequential focus navigation.

The tabindex attribute, if specified, must have a value that is a valid integer.

Each element can have a tabindex focus flag set, as defined below. This flag is
a factor that contributes towards determining whether an element is focusable, as
described in the next section.

If the attribute is specified, it must be parsed using the rules for parsing integers.
The attribute's values have the following meanings:

If the attribute is omitted or parsing the value returns an error
The user agent should follow platform conventions to determine if the element's
tabindex focus flag is set and, if so, whether the element can be reached using
sequential focus navigation, and if so, what its relative order should be.

Modulo platform conventions, it is suggested that for the following elements, the
tabindex focus flag be set:

• a elements that have an href attribute

• link elements that have an href attribute

• button elements

• input elements whose type attribute are not in the Hidden state

• select elements

• textarea elements

http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/browsers.html#child-browsing-context
http://www.w3.org/TR/html5/browsers.html#browsing-context-container
http://www.w3.org/TR/html5/infrastructure.html#valid-integer
http://www.w3.org/TR/html5/infrastructure.html#rules-for-parsing-integers
http://www.w3.org/TR/html5/text-level-semantics.html#the-a-element
http://www.w3.org/TR/html5/links.html#attr-hyperlink-href
http://www.w3.org/TR/html5/document-metadata.html#the-link-element
http://www.w3.org/TR/html5/document-metadata.html#attr-link-href
http://www.w3.org/TR/html5/forms.html#the-button-element
http://www.w3.org/TR/html5/forms.html#the-input-element
http://www.w3.org/TR/html5/forms.html#attr-input-type
http://www.w3.org/TR/html5/forms.html#hidden-state-(type=hidden)
http://www.w3.org/TR/html5/forms.html#the-select-element
http://www.w3.org/TR/html5/forms.html#the-textarea-element

Page 6 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

• Editing hosts

• Browsing context containers

One valid reason to ignore the platform conventions and always allow an element
to be focused (by setting its tabindex focus flag) would be if the user's only
mechanism for activating an element is through a keyboard action that triggers
the focused element.

If the value is a negative integer
The user agent must set the element's tabindex focus flag, but should not allow
the element to be reached using sequential focus navigation.

One valid reason to ignore the requirement that sequential focus navigation not
allow the author to lead to the element would be if the user's only mechanism for
moving the focus is sequential focus navigation. For instance, a keyboard-only
user would be unable to click on a text field with a negative tabindex, so that
user's user agent would be well justified in allowing the user to tab to the control
regardless.

If the value is a zero
The user agent must set the element's tabindex focus flag, should allow the
element to be reached using sequential focus navigation, and should follow
platform conventions to determine the element's relative order.

If the value is greater than zero
The user agent must set the element's tabindex focus flag, should allow the
element to be reached using sequential focus navigation, and should place the
element in the sequential focus navigation order so that it is:

• before any focusable element whose tabindex attribute has been
omitted or whose value, when parsed, returns an error,

• before any focusable element whose tabindex attribute has a value
equal to or less than zero,

• after any element whose tabindex attribute has a value greater than
zero but less than the value of the tabindex attribute on the element,

• after any element whose tabindex attribute has a value equal to the
value of the tabindex attribute on the element but that is earlier in the
document in tree order than the element,

• before any element whose tabindex attribute has a value equal to the
value of the tabindex attribute on the element but that is later in the
document in tree order than the element, and

• before any element whose tabindex attribute has a value greater than

http://www.w3.org/TR/html5/browsers.html#browsing-context-container
http://www.w3.org/TR/html5/infrastructure.html#tree-order
http://www.w3.org/TR/html5/infrastructure.html#tree-order

Page 7 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

the value of the tabindex attribute on the element.

An element that has its tabindex focus flag set but does not otherwise have an
activation behavior defined has an activation behavior that does nothing.

This means that an element that is only focusable because of its tabindex
attribute will fire a click event in response to a non-mouse activation (e.g.
hitting the "enter" key while the element is focused).

The tabIndex IDL attribute must reflect the value of the tabindex content
attribute. Its default value is 0 for elements that are focusable and −1 for
elements that are not focusable.

7.4.2 Focus management

An element is focusable if all of the following conditions are met:

• The element's tabindex focus flag is set.

• The element is either being rendered or is a descendant of a canvas
element that represents embedded content.

• The element is not inert.

• The element is not disabled.

In addition, each shape that is generated for an area element, any user-agent-
provided interface components of media elements (e.g. a play button), and
distinct user interface components of form controls (e.g. "up" and "down" buttons
on an <input type=number> spin control), should be focusable, unless
platform conventions dictate otherwise or unless their corresponding element is
disabled. (A single area element can correspond to multiple shapes, since
image maps can be reused with multiple images on a page.)

Notwithstanding the above, user agents may make any element or part of an
element focusable, especially to aid with accessibility or to better match platform
conventions.

The focusing steps for an element are as follows:

1. If the element is not in a Document, or if the element's Document has no
browsing context, or if the element's Document's browsing context has no
top-level browsing context, or if the element is not focusable, or if the
element is already focused, then abort these steps.

http://www.w3.org/TR/html5/dom.html#activation-behavior
http://www.w3.org/TR/html5/dom.html#activation-behavior
http://www.w3.org/TR/html5/infrastructure.html#event-click
http://www.w3.org/TR/html5/infrastructure.html#reflect
http://www.w3.org/TR/html5/rendering.html#being-rendered
http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
http://www.w3.org/TR/html5/dom.html#represents
http://www.w3.org/TR/html5/dom.html#embedded-content-2
http://www.w3.org/TR/html5/disabled-elements.html#concept-element-disabled
http://www.w3.org/TR/html5/embedded-content-0.html#the-area-element
http://www.w3.org/TR/html5/embedded-content-0.html#media-element
http://www.w3.org/TR/html5/forms.html#number-state-(type=number)
http://www.w3.org/TR/html5/disabled-elements.html#concept-element-disabled
http://www.w3.org/TR/html5/embedded-content-0.html#the-area-element
http://www.w3.org/TR/html5/infrastructure.html#in-a-document
http://www.w3.org/TR/html5/infrastructure.html#in-a-document
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context

Page 8 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

2. If focusing the element will remove the focus from another element, then
run the unfocusing steps for that element.

3. Make the element the currently focused element in its top-level browsing
context.
Some elements, most notably area, can correspond to more than one
distinct focusable area. If a particular area was indicated when the
element was focused, then that is the area that must get focus; otherwise,
e.g. when using the focus() method, the first such region in tree order is
the one that must be focused.

4. The user agent may apply relevant platform-specific conventions for
focusing widgets.
For example, some platforms select the contents of a text field when that
field is focused.

5. Fire a simple event named focus at the element.

User agents must synchronously run the focusing steps for an element whenever
the user moves the focus to a focusable element.

The unfocusing steps for an element are as follows:

1. If the element is an input element, and the change event applies to the
element, and the element does not have a defined activation behavior,
and the user has changed the element's value or its list of selected files
while the control was focused without committing that change, then fire a
simple event that bubbles named change at the element.

2. Unfocus the element.

3. Fire a simple event named blur at the element.

When an element that is focused stops being a focusable element, or stops
being focused without another element being explicitly focused in its stead, the
user agent should synchronously run the unfocusing steps for the affected
element only.

For example, this might happen because the element is removed from its
Document, or has a hidden attribute added. It would also happen to an

http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/embedded-content-0.html#the-area-element
http://www.w3.org/TR/html5/webappapis.html#fire-a-simple-event
http://www.w3.org/TR/html5/forms.html#the-input-element
http://www.w3.org/TR/html5/forms.html#event-input-change
http://www.w3.org/TR/html5/dom.html#activation-behavior
http://www.w3.org/TR/html5/forms.html#concept-fe-value
http://www.w3.org/TR/html5/forms.html#concept-input-type-file-selected
http://www.w3.org/TR/html5/webappapis.html#fire-a-simple-event
http://www.w3.org/TR/html5/webappapis.html#fire-a-simple-event
http://www.w3.org/TR/html5/webappapis.html#fire-a-simple-event
http://www.w3.org/TR/html5/dom.html#document

Page 9 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

input element when the element gets disabled.

7.4.3 Document-level focus APIs

document . activeElement
Returns the currently focused element.
document . hasFocus()
Returns true if the document has focus; otherwise, returns false.
window . focus()
Focuses the window. Use of this method is discouraged. Allow the user to control
window focus instead.
window . blur()
Unfocuses the window. Use of this method is discouraged. Allow the user to
control window focus instead.
The activeElement attribute on Document objects must return the element in
the document that is focused. If no element in the Document is focused, this
must return the body element.

When a child browsing context is focused, its browsing context container is also
focused, by definition. For example, if the user moves the focus to a text field in
an iframe, the iframe is the element with focus in the parent browsing context.

The hasFocus() method on Document objects must return true if the
Document's browsing context is focused, and all its ancestor browsing contexts
are also focused, and the top-level browsing context has the system focus. If the
Document has no browsing context or if its browsing context has no top-level
browsing context, then the method will always return false.

The focus() method on the Window object, when invoked, provides a hint to
the user agent that the script believes the user might be interested in the
contents of the browsing context of the Window object on which the method was
invoked.

User agents are encouraged to have this focus() method trigger some kind of
notification.

The blur() method on the Window object, when invoked, provides a hint to the
user agent that the script believes the user probably is not currently interested in
the contents of the browsing context of the Window object on which the method
was invoked, but that the contents might become interesting again in the future.

User agents are encouraged to ignore calls to this blur() method entirely.

Historically the focus() and blur() methods actually affected the system
focus, but hostile sites widely abuse this behavior to the user's detriment.

http://www.w3.org/TR/html5/forms.html#the-input-element
http://www.w3.org/TR/html5/forms.html#concept-fe-disabled
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/dom.html#the-body-element-0
http://www.w3.org/TR/html5/browsers.html#child-browsing-context
http://www.w3.org/TR/html5/browsers.html#browsing-context-container
http://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
http://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
http://www.w3.org/TR/html5/browsers.html#parent-browsing-context
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/browsers.html#ancestor-browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/browsers.html#top-level-browsing-context
http://www.w3.org/TR/html5/browsers.html#window
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/browsers.html#window
http://www.w3.org/TR/html5/browsers.html#window
http://www.w3.org/TR/html5/browsers.html#browsing-context
http://www.w3.org/TR/html5/browsers.html#window

Page 10 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

7.4.4 Element-level focus APIs

element . focus()
Focuses the element.
element . blur()
Unfocuses the element. Use of this method is discouraged. Focus another
element instead.
Do not use this method to hide the focus ring. Do not use any other method that
hides the focus ring from keyboard users, in particular do not use a CSS rule to
override the 'outline' property. Removal of the focus ring leads to serious
accessibility issues for users who navigate and interact with interactive content
using the keyboard.
The focus() method, when invoked, must run the following algorithm:

1. If the element is marked as locked for focus, then abort these steps.

2. Mark the element as locked for focus.

3. Run the focusing steps for the element.

4. Unmark the element as locked for focus.

The blur() method, when invoked, should run the unfocusing steps for the
element on which the method was called instead. User agents may selectively or
uniformly ignore calls to this method for usability reasons.

For example, if the blur() method is unwisely being used to remove the
focus ring for aesthetics reasons, the page would become unusable by
keyboard users. Ignoring calls to this method would thus allow keyboard users
to interact with the page.

7.5 Assigning keyboard shortcuts

7.5.1 Introduction

This section is non-normative.

Each element that can be activated or focused can be assigned a single key
combination to activate it, using the accesskey attribute.

The exact shortcut is determined by the user agent, based on information about
the user's keyboard, what keyboard shortcuts already exist on the platform, and
what other shortcuts have been specified on the page, using the information

Page 11 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

provided in the accesskey attribute as a guide.

In order to ensure that a relevant keyboard shortcut is available on a wide variety
of input devices, the author can provide a number of alternatives in the
accesskey attribute.

Each alternative consists of a single character, such as a letter or digit.

User agents can provide users with a list of the keyboard shortcuts, but authors
are encouraged to do so also. The accessKeyLabel IDL attribute returns a
string representing the actual key combination assigned by the user agent.

In this example, an author has provided a button that can be invoked using a
shortcut key. To support full keyboards, the author has provided "C" as a
possible key. To support devices equipped only with numeric keypads, the author
has provided "1" as another possibly key.

To tell the user what the shortcut key is, the author has this script here opted to
explicitly add the key combination to the button's label:

function addShortcutKeyLabel(button) {
 if (button.accessKeyLabel != '')
 button.value += ' (' + button.accessKeyLabel + ')';
}
addShortcutKeyLabel(document.getElementById('c'));
Browsers on different platforms will show different labels, even for the same key
combination, based on the convention prevalent on that platform. For example, if
the key combination is the Control key, the Shift key, and the letter C, a Windows
browser might display "Ctrl+Shift+C", whereas a Mac browser might display
"^⇧C", while an Emacs browser might just display "C-C". Similarly, if the key
combination is the Alt key and the Escape key, Windows might use "Alt+Esc",
Mac might use "⌥⎋", and an Emacs browser might use "M-ESC" or "ESC ESC".

In general, therefore, it is unwise to attempt to parse the value returned from the
accessKeyLabel IDL attribute.

7.5.2 The accesskey attribute

All HTML elements may have the accesskey content attribute set. The
accesskey attribute's value is used by the user agent as a guide for creating a
keyboard shortcut that activates or focuses the element.

If specified, the value must be an ordered set of unique space-separated tokens
that are case-sensitive, each of which must be exactly one Unicode code point in
length.

In the following example, a variety of links are given with access keys so that
keyboard users familiar with the site can more quickly navigate to the relevant

http://www.w3.org/TR/html5/infrastructure.html#html-elements
http://www.w3.org/TR/html5/infrastructure.html#ordered-set-of-unique-space-separated-tokens
http://www.w3.org/TR/html5/infrastructure.html#case-sensitive

Page 12 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

pages:

<nav>
 <p>
 <a title="Consortium Activities" accesskey="A" href="/
Consortium/activities">Activities |
 <a title="Technical Reports and Recommendations"
accesskey="T" href="/TR/">Technical Reports |
 <a title="Alphabetical Site Index" accesskey="S" href="/
Consortium/siteindex">Site Index |
 <a title="About This Site" accesskey="B" href="/
Consortium/">About Consortium |
 <a title="Contact Consortium" accesskey="C" href="/
Consortium/contact">Contact
 </p>
</nav>
In the following example, the search field is given two possible access keys, "s"
and "0" (in that order). A user agent on a device with a full keyboard might pick
Ctrl+Alt+S as the shortcut key, while a user agent on a small device with just
a numeric keypad might pick just the plain unadorned key 0:

<form action="/search">
 <label>Search: <input type="search" name="q" accesskey="s
0"></label>
 <input type="submit">
</form>
In the following example, a button has possible access keys described. A script
then tries to update the button's label to advertise the key combination the user
agent selected.

<input type=submit accesskey="N @ 1" value="Compose">
...
<script>
 function labelButton(button) {
 if (button.accessKeyLabel)
 button.value += ' (' + button.accessKeyLabel + ')';
 }
 var inputs = document.getElementsByTagName('input');
 for (var i = 0; i < inputs.length; i += 1) {
 if (inputs[i].type == "submit")
 labelButton(inputs[i]);
 }
</script>
On one user agent, the button's label might become "Compose (⌘N)". On
another, it might become "Compose (Alt+⇧+1)". If the user agent doesn't
assign a key, it will be just "Compose". The exact string depends on what the
assigned access key is, and on how the user agent represents that key

http://www.w3.org/TR/html5/text-level-semantics.html#the-s-element

Page 13 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

combination.

7.5.3 Processing model

An element's assigned access key is a key combination derived from the
element's accesskey content attribute. Initially, an element must not have an
assigned access key.

Whenever an element's accesskey attribute is set, changed, or removed, the
user agent must update the element's assigned access key by running the
following steps:

1. If the element has no accesskey attribute, then skip to the fallback step
below.

2. Otherwise, split the attribute's value on spaces, and let keys be the
resulting tokens.

3. For each value in keys in turn, in the order the tokens appeared in the
attribute's value, run the following substeps:

1. If the value is not a string exactly one Unicode code point in length,
then skip the remainder of these steps for this value.

2. If the value does not correspond to a key on the system's keyboard,
then skip the remainder of these steps for this value.

3. If the user agent can find a mix of zero or more modifier keys that,
combined with the key that corresponds to the value given in the
attribute, can be used as the access key, then the user agent may
assign that combination of keys as the element's assigned access
key and abort these steps.

4. Fallback: Optionally, the user agent may assign a key combination of its
choosing as the element's assigned access key and then abort these
steps.

5. If this step is reached, the element has no assigned access key.

Once a user agent has selected and assigned an access key for an element, the
user agent should not change the element's assigned access key unless the
accesskey content attribute is changed or the element is moved to another

http://www.w3.org/TR/html5/infrastructure.html#split-a-string-on-spaces

Page 14 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

Document.

User agents might expose elements that have an accesskey attribute in other
ways as well, e.g. in a menu displayed in response to a specific key combination.

The accessKey IDL attribute must reflect the accesskey content attribute.

The accessKeyLabel IDL attribute must return a string that represents the
element's assigned access key, if any. If the element does not have one, then the
IDL attribute must return the empty string.

7.6 Editing

7.6.1 Making document regions editable: The contenteditable content
attribute

The contenteditable attribute is an enumerated attribute whose keywords
are the empty string, true, and false. The empty string and the true keyword
map to the true state. The false keyword maps to the false state. In addition,
there is a third state, the inherit state, which is the missing value default (and the
invalid value default).

The true state indicates that the element is editable. The inherit state indicates
that the element is editable if its parent is. The false state indicates that the
element is not editable.

element . contentEditable [= value]
Returns "true", "false", or "inherit", based on the state of the
contenteditable attribute.
Can be set, to change that state.
Throws a SyntaxError exception if the new value isn't one of those strings.
element . isContentEditable
Returns true if the element is editable; otherwise, returns false.
The contentEditable IDL attribute, on getting, must return the string "true" if
the content attribute is set to the true state, "false" if the content attribute is set
to the false state, and "inherit" otherwise. On setting, if the new value is an
ASCII case-insensitive match for the string "inherit" then the content attribute
must be removed, if the new value is an ASCII case-insensitive match for the
string "true" then the content attribute must be set to the string "true", if the
new value is an ASCII case-insensitive match for the string "false" then the
content attribute must be set to the string "false", and otherwise the attribute
setter must throw a SyntaxError exception.

The isContentEditable IDL attribute, on getting, must return true if the

http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/infrastructure.html#reflect
http://www.w3.org/TR/html5/infrastructure.html#enumerated-attribute
http://www.w3.org/TR/html5/infrastructure.html#syntaxerror
http://www.w3.org/TR/html5/infrastructure.html#ascii-case-insensitive
http://www.w3.org/TR/html5/infrastructure.html#ascii-case-insensitive
http://www.w3.org/TR/html5/infrastructure.html#ascii-case-insensitive
http://www.w3.org/TR/html5/infrastructure.html#syntaxerror

Page 15 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

element is either an editing host or editable, and false otherwise.

7.6.2 Making entire documents editable: The designMode IDL attribute

Documents have a designMode, which can be either enabled or disabled.

document . designMode [= value]
Returns "on" if the document is editable, and "off" if it isn't.
Can be set, to change the document's current state. This focuses the document
and resets the selection in that document.
The designMode IDL attribute on the Document object takes two values, "on"
and "off". On setting, the new value must be compared in an ASCII case-
insensitive manner to these two values; if it matches the "on" value, then
designMode must be enabled, and if it matches the "off" value, then
designMode must be disabled. Other values must be ignored.

On getting, if designMode is enabled, the IDL attribute must return the value
"on"; otherwise it is disabled, and the attribute must return the value "off".

The last state set must persist until the document is destroyed or the state is
changed. Initially, documents must have their designMode disabled.

When the designMode changes from being disabled to being enabled, the user
agent must synchronously reset the document's active range's start and end
boundary points to be at the start of the Document and then run the focusing
steps for the root element of the Document, if any.

7.6.3 Best practices for in-page editors

Authors are encouraged to set the 'white-space' property on editing hosts and on
markup that was originally created through these editing mechanisms to the
value 'pre-wrap'. Default HTML whitespace handling is not well suited to
WYSIWYG editing, and line wrapping will not work correctly in some corner
cases if 'white-space' is left at its default value.

As an example of problems that occur if the default 'normal' value is used
instead, consider the case of the user typing "yellow␣␣ball", with two spaces
(here represented by "␣") between the words. With the editing rules in place for
the default value of 'white-space' ('normal'), the resulting markup will either
consist of "yellow ball" or "yellow ball"; i.e., there will be
a non-breaking space between the two words in addition to the regular space.
This is necessary because the 'normal' value for 'white-space' requires adjacent
regular spaces to be collapsed together.

In the former case, "yellow⍽" might wrap to the next line ("⍽" being used here to
represent a non-breaking space) even though "yellow" alone might fit at the
end of the line; in the latter case, "⍽ball", if wrapped to the start of the line,

http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/infrastructure.html#ascii-case-insensitive
http://www.w3.org/TR/html5/infrastructure.html#ascii-case-insensitive
http://www.w3.org/TR/html5/dom.html#document
http://www.w3.org/TR/html5/dom.html#document

Page 16 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

would have visible indentation from the non-breaking space.

When 'white-space' is set to 'pre-wrap', however, the editing rules will instead
simply put two regular spaces between the words, and should the two words be
split at the end of a line, the spaces would be neatly removed from the rendering.

7.6.4 Editing APIs

The definition of the terms active range, editing host, and editable, the user
interface requirements of elements that are editing hosts or editable, the
execCommand(), queryCommandEnabled(), queryCommandIndeterm(),
queryCommandState(), queryCommandSupported(), and
queryCommandValue() methods, text selections, and the delete the selection
algorithm are defined in the HTML Editing APIs specification. The interaction of
editing and the undo/redo features in user agents is defined by the UndoManager
and DOM Transaction specification. [EDITING] [UNDO]

7.6.5 Spelling and grammar checking

User agents can support the checking of spelling and grammar of editable text,
either in form controls (such as the value of textarea elements), or in elements
in an editing host (e.g. using contenteditable).

For each element, user agents must establish a default behavior, either through
defaults or through preferences expressed by the user. There are three possible
default behaviors for each element:

true-by-default
The element will be checked for spelling and grammar if its contents are editable.
false-by-default
The element will never be checked for spelling and grammar.
inherit-by-default
The element's default behavior is the same as its parent element's. Elements that
have no parent element cannot have this as their default behavior.

The spellcheck attribute is an enumerated attribute whose keywords are the
empty string, true and false. The empty string and the true keyword map to
the true state. The false keyword maps to the false state. In addition, there is a
third state, the default state, which is the missing value default (and the invalid
value default).

The true state indicates that the element is to have its spelling and grammar
checked. The default state indicates that the element is to act according to a
default behavior, possibly based on the parent element's own spellcheck
state, as defined below. The false state indicates that the element is not to be
checked.

http://www.w3.org/TR/html5/references.html#refsEDITING
http://www.w3.org/TR/html5/references.html#refsUNDO
http://www.w3.org/TR/html5/forms.html#the-textarea-element
http://www.w3.org/TR/html5/infrastructure.html#enumerated-attribute

Page 17 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

element . spellcheck [= value]
Returns true if the element is to have its spelling and grammar checked;
otherwise, returns false.
Can be set, to override the default and set the spellcheck content attribute.
The spellcheck IDL attribute, on getting, must return true if the element's
spellcheck content attribute is in the true state, or if the element's
spellcheck content attribute is in the default state and the element's default
behavior is true-by-default, or if the element's spellcheck content attribute is in
the default state and the element's default behavior is inherit-by-default and the
element's parent element's spellcheck IDL attribute would return true;
otherwise, if none of those conditions applies, then the attribute must instead
return false.

The spellcheck IDL attribute is not affected by user preferences that override
the spellcheck content attribute, and therefore might not reflect the actual
spellchecking state.

On setting, if the new value is true, then the element's spellcheck content
attribute must be set to the literal string "true", otherwise it must be set to the
literal string "false".

User agents must only consider the following pieces of text as checkable for the
purposes of this feature:

• The value of input elements whose type attributes are in the Text,
Search, URL, or E-mail states and that are mutable (i.e. that do not have
the readonly attribute specified and that are not disabled).

• The value of textarea elements that do not have a readonly attribute
and that are not disabled.

• Text in Text nodes that are children of editing hosts or editable elements.

• Text in attributes of editable elements.

For text that is part of a Text node, the element with which the text is associated
is the element that is the immediate parent of the first character of the word,
sentence, or other piece of text. For text in attributes, it is the attribute's element.
For the values of input and textarea elements, it is the element itself.

To determine if a word, sentence, or other piece of text in an applicable element
(as defined above) is to have spelling- and grammar-checking enabled, the UA

http://www.w3.org/TR/html5/forms.html#concept-fe-value
http://www.w3.org/TR/html5/forms.html#the-input-element
http://www.w3.org/TR/html5/forms.html#attr-input-type
http://www.w3.org/TR/html5/forms.html#text-(type=text)-state-and-search-state-(type=search)
http://www.w3.org/TR/html5/forms.html#text-(type=text)-state-and-search-state-(type=search)
http://www.w3.org/TR/html5/forms.html#url-state-(type=url)
http://www.w3.org/TR/html5/forms.html#e-mail-state-(type=email)
http://www.w3.org/TR/html5/forms.html#concept-fe-mutable
http://www.w3.org/TR/html5/forms.html#attr-input-readonly
http://www.w3.org/TR/html5/forms.html#concept-fe-disabled
http://www.w3.org/TR/html5/forms.html#concept-fe-value
http://www.w3.org/TR/html5/forms.html#the-textarea-element
http://www.w3.org/TR/html5/forms.html#attr-textarea-readonly
http://www.w3.org/TR/html5/forms.html#concept-fe-disabled
http://www.w3.org/TR/html5/infrastructure.html#text-0
http://www.w3.org/TR/html5/infrastructure.html#text-0
http://www.w3.org/TR/html5/forms.html#the-input-element
http://www.w3.org/TR/html5/forms.html#the-textarea-element

Page 18 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

must use the following algorithm:

1. If the user has disabled the checking for this text, then the checking is
disabled.

2. Otherwise, if the user has forced the checking for this text to always be
enabled, then the checking is enabled.

3. Otherwise, if the element with which the text is associated has a
spellcheck content attribute, then: if that attribute is in the true state,
then checking is enabled; otherwise, if that attribute is in the false state,
then checking is disabled.

4. Otherwise, if there is an ancestor element with a spellcheck content
attribute that is not in the default state, then: if the nearest such ancestor's
spellcheck content attribute is in the true state, then checking is
enabled; otherwise, checking is disabled.

5. Otherwise, if the element's default behavior is true-by-default, then
checking is enabled.

6. Otherwise, if the element's default behavior is false-by-default, then
checking is disabled.

7. Otherwise, if the element's parent element has its checking enabled, then
checking is enabled.

8. Otherwise, checking is disabled.

If the checking is enabled for a word/sentence/text, the user agent should
indicate spelling and grammar errors in that text. User agents should take into
account the other semantics given in the document when suggesting spelling and
grammar corrections. User agents may use the language of the element to
determine what spelling and grammar rules to use, or may use the user's
preferred language settings. UAs should use input element attributes such as
pattern to ensure that the resulting value is valid, where possible.

If checking is disabled, the user agent should not indicate spelling or grammar
errors for that text.

Even when checking is enabled, user agents may opt to not report spelling or
grammar errors in text that the user agent deems the user has no interest in
having checked (e.g. text that was already present when the page was loaded, or
that the user did not type, or text in controls that the user has not focused, or in
parts of e-mail addresses that the user agent is not confident were misspelt).

The element with ID "a" in the following example would be the one used to
determine if the word "Hello" is checked for spelling errors. In this example, it

http://www.w3.org/TR/html5/forms.html#the-input-element
http://www.w3.org/TR/html5/forms.html#attr-input-pattern

Page 19 of 19

7 User interaction — HTML5 8/18/15, 9:39 PM

would not be.

<div contenteditable="true">
 Hello!
</div>
The element with ID "b" in the following example would have checking enabled
(the leading space character in the attribute's value on the input element
causes the attribute to be ignored, so the ancestor's value is used instead,
regardless of the default).

<p spellcheck="true">
 <label>Name: <input spellcheck=" false" id="b"></label>
</p>
This specification does not define the user interface for spelling and grammar
checkers. A user agent could offer on-demand checking, could perform
continuous checking while the checking is enabled, or could use other interfaces.

http://www.w3.org/TR/html5/forms.html#the-input-element

